
Vector Parser
Cognition a compression or expansion of the world?



The fundamental conjecture of the Vector Parser 
was that cognition may be an expansion of the 

world, not a compression.



Not totally crazy anymore

The central idea that cognitive structure is an expansion not a 
compression might seem odd, or implausible.

But not totally crazy anymore. OpenCog embracing it?

The Vector Parser was an early attempt to implement this idea.

This fuller technical description, and an earlier paper I presented in 
2000, are now old.

But the central idea is still not widely appreciated.



Short history of Vector Parser

The Vector Parser came out of work done initially between 1994-96 
attempting to formalize grammatical errors for a project in Hong 
Kong.

Unique environment: tension between machine learning and distributed 
representation.

Key insight in 1996 was that machine learning of grammar 
generated something strikingly resembling a kind of bottom up 
uncertainty principle.

Still new in 2021.



Grammar can’t be learned

This remains the central conjecture of the Vector Parser.

Grammar cannot be learned. There is a tension between 
different groupings which produces a kind of uncertainty 
principle.

c.f. Paul Hopper. BIG history in linguistics dating back to 
Chomsky schism. But not understood mathematically in 
linguistics.



Flipside - Expansion

But there’s a flipside to that. Grammar can be put together in 
new ways all the time.

And all those new ways are actually far more productive, 
even creative. It’s a feature, not a bug.



Patterns can grow without bound

We know there are patterns 
which grow without bound.
Gosper’s Glider Gun an 
existence proof.
But finite “learning” not 
“expansion” still 
dominates AI in 2021. Even 
10 years after deep learning.



Overview

I’ll try to split the presentation into four parts:

1. Quick worked example
2. Relationship to deep learning/neural nets/transformers
3. Relationship to more recent work on mathematical 

representations of indeterminacy and non-finite representation, 
OpenCog, Coecke.

4. Something fresh and fun, “one more thing”, looking to the 
future, at the end. Don’t go to sleep!



1) Quick overview of Vector Parser

The vector parser works much the same way machine learning of 
grammar does.

Zellig Harris, "notion of interchangeability": “constituents 
of the same type can be replaced by each other”

Generally machine learning attempts to compress language structure 
based on substitutions.



Same as Machine Learning. Just upside down

By contrast the vector parser attempts to expand structure based 
on substitutions. Upside down.

Algorithm (substitutes, rather than combining as in ML):

1. Substitutes for pairs of words with single words (Principle of 
Interchangeability) 

2. Iterate and repeat.

Structure appears fairly easily. There’s a preferred order of 
substitution of the pairs ((A B) C) or (A (B C)).

It forms trees.



“White House” can be expanded with single word substitutes {senate, ...  jsp,...}

Example: “The White House news conference Monday”



“News conference” can be substituted by {...meeting,… report,... committee,...}



These single word substitutes then combine to generate new single word 
substitutes for whole phrase {jsp, diet, ldp…} (Japanese corpus?)



Those single word substitutes are found to combine with “the” (most things do.)



And, as a unit, enough of these combinations are found to occur in the context of 
substitutes which expand “Monday”.



The path of largest pairwise substitution generates a tree.



Very much like Grammatical Induction/Machine Learning

It uses Harris’s Principle of Interchangeability. But 
substitutes to expand, rather than combining to 
compress.

Expanded classes don’t have to be global. They can 
be specific to a given context.

Everything else is the same.



Demo online (intermittently)

You can play with this yourself online (when the server is up!)

http://demo.chaoticlanguage.com

Remember it’s 20 years old. More than one simultaneous user 
will probably crash it!

http://demo.chaoticlanguage.com




2) Contrast with deep learning/transformers

Remember, the motivation for the Vector Parser was 
that learning resulted in a kind of “macro quantum”, 
“uncertainty principle”, which made global grammar 
impossible.

How does deep learning deal with this?

By ignoring it. (Ignoring? c.f. Chomsky. Ignores his 
schism.)



Why has deep learning crushed symbolic AI?

Success since 2010. Why? Usual answer is machine 
learning. But why not symbolic machine learning? Why 
distributed representation?
Stanford: "we currently lack a clear understanding of 
how they work"
Deep learning lacks theory.



Is the indeterminacy the (hidden) theory of deep learning?

From point-of-view of indeterminacy they work better 
than learned symbolic representations, exactly 
because a lot is left distributed and not “learned”?



Deep learning moving forwards, backwards?

If indeterminacy is the missing theory of deep learning, 
then “learning” is the wrong way to go.

They use back-prop like a talisman, thinking they are trying to 
compress. But what works is always more layers, bigger 
representations!

It’s like, oh wow, bigger representations does stuff we hadn’t 
imagined. Let’s make them “Foundational”. But "we currently 
lack a clear understanding of how they work"!



Simply embrace expansion and it’s easy.

With the vector parser we do know. Follows same principles of 
substitution.

The only difference we accept they expand.

You don’t have to burn a hole in the planet trying to learn 
infinity. Just expand it as you need it.

You can have structure. Just recognize it’s ephemeral, growing.



Semantic glosses.

Transformers don’t give structure.

Expansion explains this is because you can’t learn infinity 
(especially contradictions.)

What you have with transformers are semantic glosses.



The Vector Parser also generates semantic “glosses”

It comes from successive substitutions. Same as transformers?

It’s very crude. I think my database was a 40Mb corpus, not 
800GB! (EleutherAI?) But some amusing semantic equivalents 
do come up:

Well, that’s all right then -> Aye, aye, Sir!





Generated semantic equivalents



How does it create these semantic equivalents?

A succession of pairwise substitutions, selected by context:

(all right) -> yes -> yes -> aye aye -> aye aye sir



“All right” substitutes to {okay, yes,...}



Add “that’s” & (thats (all right)) substitutes to “yes, yes”



Add “well” & (well (thats (all right))) substitutes to aye aye



Add then & ((well (thats (all right))) then) subs to “aye aye sir”



Possibly this generation of semantic glosses is the same

The context filter for substitutions is very primitive for the Vector 
Parser.

But I would guess that the generation of “semantic glosses” works in 
much the same way as transformers.



Potential benefits of expanding model over transformers

1. Structure
2. “One-shot learning” no different to any other input. “Corner cases”, “long 

tail”? Creativity..” (Freewill, consciousness? Creates “time”?)
3. Doesn’t need enormous data to list all possibilities beforehand.
4. Doesn’t need $millions on compute time to compute everything 

beforehand. Only generates structures it meets.
5. Finally a theory for distributed representation. The theory is 

undecidability.

Basically it provides a theory for distributed models. An argument 
why they work, and how they need to change.



So that’s the contrast with deep learning.

Probably the same thing

But they ignore undecidability.

They work backwards the whole time. Thinking they’re 
compressing, but actually expanding ever more structure.

But because they ignore it, working backwards, they don’t know 
how to move forwards.



3) Contrast with approaches based on indeterminate 
structure

No longer totally crazy.

Unlike 20 years ago, there is now some other AI work which 
is starting to come to the same conclusions.

Recent work on decidability in OpenCog Atomspace. Or Bob 
Coecke “togetherness”.



History recapped

That linguistic category might be undecidable was the initial motivation 
for the vector parser.

Though initially the link to mathematical dedicability was not known, 
only an analogy to quantum type behaviour.

Freeman R. J., Example-based Complexity--Syntax and Semantics as the 
Production of Ad-hoc Arrangements of Examples, Proceedings of the 
ANLP/NAACL 2000 Workshop on Syntactic and Semantic Complexity in NL 
Processing Systems, pp. 47-50.

Categories are represented as vectors. Irreducibly distributed.



Analogues found in other fields: physics, maths, and 
linguistics.
Over the years I found more an more analogues in different fields.

My initial analogy was between assemblies of elements and quantum uncertainty, 
c.f. Robert Lachlan “maco quantum” properties of assemblies. (Reinventing 
Physics from the Bottom Down - Nice “upside down” feel to it.)

Hofstadter’s GEB. Led to a closer study of Goedel incompleteness, which led to 
category theory.

I also stumbled on the observation of indeterminacy creating Chomsky’s schism 
in linguistics. Lamb, Newmeyer.

It was amusing that both Goedel and Chomsky thought indeterminacy pointed to 
the existence of external oracles. God for Goedel, and Universal Grammar for 
Chomsky.



Now, finally some signs of this AI.

● Bob Coecke’s “Togetherness” with a quantum/category 
theoretic formulation.

● OpenCog also now embracing category theory notions in 
their atomspace?



Progress! In 2010 decidability was not a factor for OpenCog

OpenCog dev to author, 2010: “Clearly there's a lot of work being done 
in natural language processing ... but this is primarily an engineering 
task; I don't see how it relates to questions of decidability"

Vepstas, “Mereology”, 2020: "In the remaining chapters, the sheaf 
construction will be used as a tool to create A(G)I representations of 
reality. Whether the constructed network is an accurate representation 
of reality is undecidable, and this is true even in a narrow, formal, 
sense."



Vector categories are sets, and elements link to other sets.



Correspondence to a hypergraph formalism?



The vector parser’s generated categories just graph ops?

That the vector parser generates categories dynamically is perhaps only 
equivalent to set operations.



How product categories are generated is perhaps specific



Note: product cat. doesn’t necessarily include operand elems



2020: OpenCog is even hinting at the idea of expansion

Vepstas’: "Brutal Composition -- 'It's just the way 
things are." There is no true, nontrivial, and finitely 
long answer.'

Mereology: 
https://github.com/opencog/atomspace/blob/master/op
encog/sheaf/docs/mereology.pd

https://github.com/opencog/atomspace/blob/master/opencog/sheaf/docs/mereology.pdf
https://github.com/opencog/atomspace/blob/master/opencog/sheaf/docs/mereology.pdf


I like this recent work.

But it does seem perhaps trapped in formalism. Also linguistic 
formalism. Ignores “Chomsky” schism.

Possibly being less steeped in formalism was an advantage. The 
Vector Parser had fewer qualms reducing representation to 
observation.

If all representations reduce to a network. Why not just keep the 
original network of observations?

So where can the vector parser add something?



If equivalence of graph operations is true, why have an intermediate 
representation at all? Any abstraction must always be partial. Or political.

You might capture some habitual forms, perhaps.

But generally the task of disambiguation will be comparable to the task of 
creation.

A simple change of basis. Doubling the work. Laboriously coding into 
ambiguity, and then laboriously decoding out.

All representations reduce to a network



Why struggle with atomspace at all?

Why not just go straight from networks of raw observation to 
contextual structure at run time?



Bob Coecke’s “Togetherness”

For Coecke's togetherness this criticism of excessive preoccupation 
with formalism might be even more stark.

He has a kind of quantum formalism. This matches my original insight 
that learned grammar displays a kind of "macro quantum" quality.

From quantum foundations via natural language meaning to a 
theory of everything, https://arxiv.org/abs/1602.07618

Coecke: “quantum theory naturally carries over to modelling how word 
meanings interact in natural language.”

https://arxiv.org/abs/1602.07618


Coecke “Togetherness”. Quantum formalism for meaning.



I’m sure it’s right. But why struggle with formalism at all?

Coecke's formalism embraces this quantum quality. I like it. I’m sure it’s the 
right formalism if you want to formalize structure globally.

But while for quantum mechanics we need such a formalism because we 
don't have direct access to any underlying assemblies (possibly Stephen 
Wolfram developing one??). For cognition we do have access to 
underlying assemblies. They are observations.

Isn't that what I said in my 2000 NAACL workshop paper. That the key 
insight is that observation is irreducibly complex, that cognitive structure 
only expands from that. That you have to calculate everything from 
observation anyway.



Summary: Three approaches to indeterminate structure in 
current tech
● NN’s ignore it.

○ Thus they are blind to the underlying indeterminacy, and can’t 
move forward: Stanford ““Foundation” paper: "we currently lack 
a clear understanding of how they work"

● Category theory, Coecke et al? Deal with indeterminate structure by 
laboriously encoding it into mathematical formalisms, and then 
laboriously decoding out of those mathematical formalisms. 

Also not clear they fully embrace expanding structure yet.

● Vector parser dealt with indeterminate structure by expanding new 
structure from context at run-time.



Conclusion:
The idea that cognition is an expansion of observation met 

sterile ground in 2000
The vector parser was a first step in the direction of pointing to an 
importance for expansion in cognitive representations.

But there was little interest in distributed models, period, in 2000.

Even in 2010 I met resistance to the idea mathematical decidability 
was relevant to language/cognitive structure. OpenCog flatly rejected 
it.

It was not immediately better on benchmarks.



Sample results - Hu Guoping, iFlytek, 2003



What it got right

Hence the results for the vector parser as formulated were no 
better than symbolic parsers.

But convenient in that it could be applied to any language.

No initial, enormous, “learning” burden. Eliminates corner 
cases. Structure generated in context...

New structure meaningful. Creativity? Freewill, 
consciousness....



What it got wrong

I sought to make all structure dynamic so no expanding structure was 
lost.

But I missed that abstraction into vectors was also 
abstraction. Similarity is subjective/context dependent.

Also “attention” was only to immediate context. So in some ways 
worse than symbolic parsers.

To retain all information, you need the network.



One more thing...



3) Addendum. Recent work: Network and physical analogue?

For a long time I was looking for a physical analogue or visualization of a 
cross-product to demonstrate how the vector parser was generating new structure.

Then I read this paper:

A Network of Integrate and Fire Neurons for Community Detection in Complex 
Networks, Marcos G. Quiles, Liang Zhao, Fabricio A. Breve, Roseli A. F. Romero

Synchronous oscillations may correspond to substitution groupings.

This is obvious in retrospect. Looking at graphs of substitution groupings.



Substitution classes depend on context. So do oscillations.

Network activated by “The effect of things it…” with substitution class for the_of



Language sequences naturally form “small world” networks

A network of all sequences in a corpus of language will 
oscillate.

Feedback is automatic because of the interconnectedness of 
language.

To get oscillation all you need to do is connect randomly inhibitory 
nodes to the right degree.

I have done some early experiments with this.



Experimental implementation using neurosimulator

This was done on neurosimulator, Brain Simulator II, by 
Charles Simon. A very nice GUI interface: 
https://futureai.guru/

Charlie did some mods for me. Thanks Charlie!

https://futureai.guru/


In Brainsim II it is easy to jam language sequences into a 
network



Though the GUI soon gets crowded with links displayed!



~1000 word corpus. Links hidden. Inhibitory nodes green.



Turns out easy to generate oscillations. Only need inhibition.

https://docs.google.com/file/d/1b23UXgD3LFqaCBJKNwpw9Ll_sjQR0_1f/preview


Substitution classes should synchronize

Elements oscillating in synchrony should be equivalent to 
substitution classes in the vector parser.

That is because both correspond to shared contexts.

We might seek these synchronously oscillating substitution classes 
using a raster plot.



Raster plot shows synchrony = shared context = substitution?



Different synchrony energies correspond to finer grain substitution groupings?



Different energy synchronies define trees?



Comparable to vector formulation substitution trees?



But oscillation substitution mapping is still speculation

Such substitution classes form parse trees in the vector formulation. So 
we might speculate they can form meaningful parse trees in a sequence 
network oscillation formulation.

An effective demonstrator will require a simulator capable of many 
more nodes. Preferably natively spiking. (If anyone has access 
to large scale spiking hardware (Loihi?), let me 
know. I want to try this network oscillation 
structuring at scale.)


