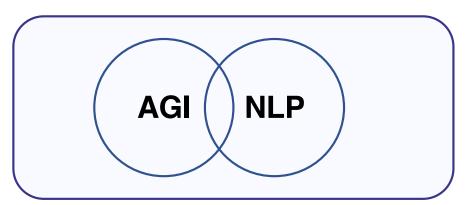
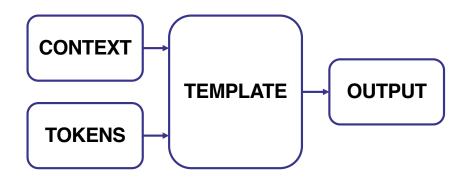

Interpretable Natural Language Segmentation and Generation Using Link Grammar

VIGNAV RAMESH R&D Intern @ SingularityNET, Contributor @ Aigents

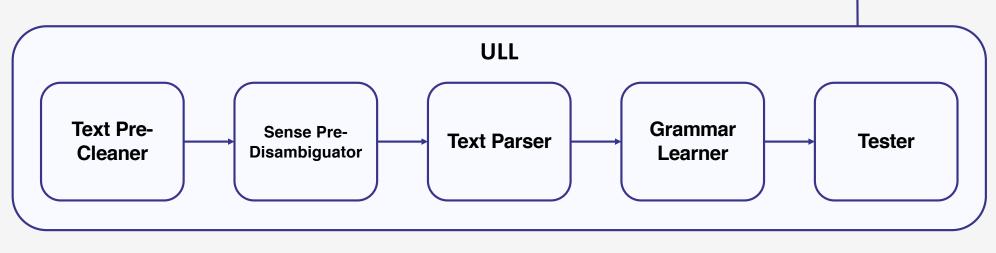

Part I


INTRO: AGI, ILP, ULL, QA, & LINK GRAMMAR

The Big Picture

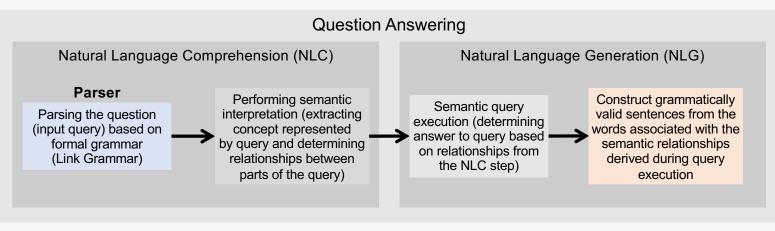
GENERAL CONVERSATIONAL INTELLIGENCE

INTERPRETABLE LANGUAGE PROCESSING



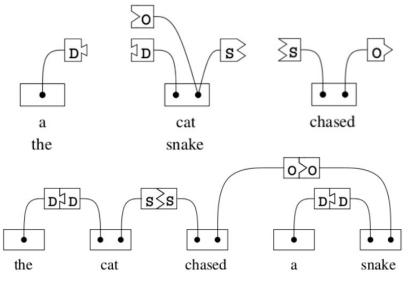
Unsupervised Language Learning

ULL...

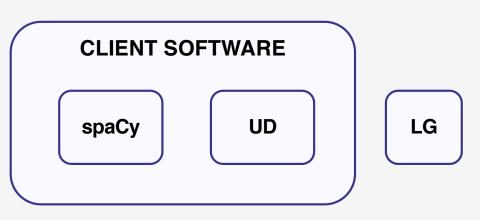

enables acquisition of language grammar from unlabeled text corpora programmatically in an unsupervised way.

LINK GRAMMAR

Question Answering


Pipeline

Link Grammar


WHAT IS LINK GRAMMAR?¹

a the: D+; cat snake: D- & (S+ or O-); chased: S- & O+;

¹ Sleator, D., Temperley, D.: Parsing English with a Link Grammar. In: Proceedings of the Third International Workshop on Parsing Technologies, pp. 277–292. Association for Computational Linguistics, Netherlands (1993)

WHY LINK GRAMMAR?

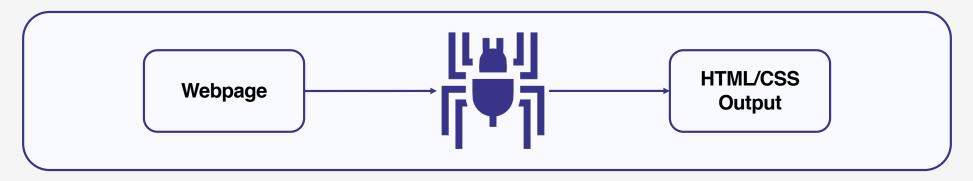
- spaCy², UD³ head-dependent, integrated into enduser programs
- LG can be updated without having to modify client code
- ✓ First native Java LG support
- Human-readable, editable adds to interpretability NLG/NLS, contributes to GCI

² https://spacy.io/, ³ https://universaldependencies.org/

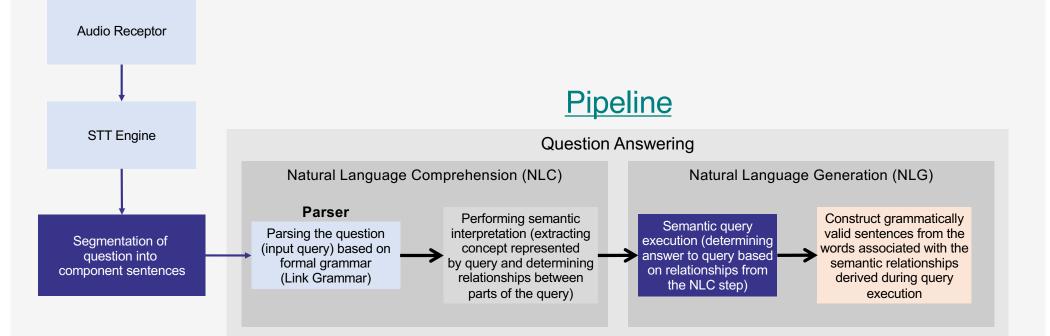
Part II DEEP DIVE INTO NLS

What is NLS?

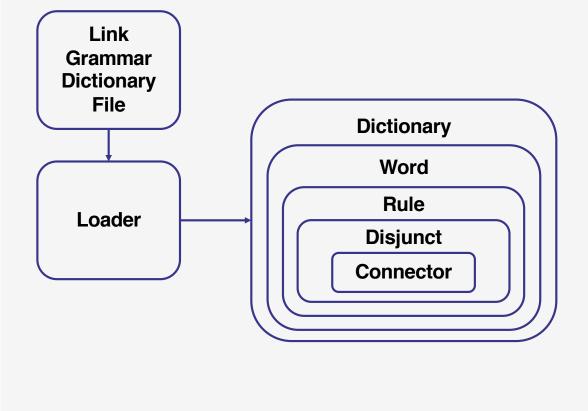
- Dividing text into meaningful units
- Sub-problem: sentence segmentation


green vines attached to the trunk of the tree had wound themselves toward the top of the canopy ants used the vine as their private highway, avoiding all the creases and crags of the bark, to freely move at top speed from top to bottom or bottom to top depending on their current chore at least this was the way it was supposed to be something had damaged the vine overnight halfway up the tree leaving a gap in the once pristine ant highway

Sources of Unsegmented Text


Speech-to-text (STT) recognition engines


Crawled web pages


NLS in QA

Loader-Segment NLS Architecture

Loader

Algorithm 1: MAKEDICT

Input : An array *lines* of all lines in the Link Grammar Database
 Output: An array [*dict*, *hyphenated*] of Dictionary objects, one for common words and one for common phrases with words separated by underscores

Initialize dict and hyphenated

Initialize macros, which maps single links to the large connector expressions they define

define ASSIGN(w, r): **if** w is a hyphenated phrase **then** | Add (w, r) to hyphenated **else** | Add (w, r) to dict

end end

for line in lines do

if line starts with a macro then Split the single link, macro, from its definition, rule Add (macro, rule) to macros

else

if line contains a filename f then Parse f to obtain the list of words it contains Replace all instances of macros in the rule rule specified in the following lines of the Link Grammar database with their expanded definitions as contained in macrosStore rule in a Rule object rfor word w in f do ASSIGN(w, r)end else Split the word, w, from its definition, rule Process rule and store it in a Rule object rReplace all instances of macros in rule with their expanded definitions as contained in macros ASSIGN(w, r)end end

return [dict, hyphenated]

end

SEGMENT

lgorithm 2: Segment	Algorithm 3: CONNECTS
Input : An array <i>tokens</i> of words and commas extracted from the input text by PROCESSSENTENCES	Input : A pair of strings <i>left</i> and <i>right</i> , representing the two words to potentially be connected
Output: A list of sentences obtained by segmenting <i>tokens</i> into grammatically and morphologically valid arrays of tokens	Output: A boolean value indicating whether $left$ and $right$ can be connected via valid Link Grammar rules
Start a counter <i>idx</i> , representing the index of the current token in <i>tokens</i> Initialize an empty list <i>ret</i> , which will eventually contain the sentences that SEGMENT will return while <i>idx</i> < <i>length</i> (<i>tokens</i>) do for <i>i</i> in [<i>idx</i> , <i>length</i> (<i>tokens</i>)] do Create array <i>arr</i> containing the subset of <i>tokens</i> from indices <i>idx</i> to <i>i</i> if ISVALID(<i>arr</i>) <i>and</i> CHECK(<i>tokens</i> [<i>i</i> + 1], <i>tokens</i> [<i>i</i> + 2]) then <i>threshold</i> = <i>n</i> (default value of 2) Add <i>tokens</i> [<i>i</i> + 1], <i>tokens</i> [<i>i</i> + 2] <i>tokens</i> [<i>i</i> + <i>n</i>] to <i>arr</i> if ISVALID(<i>arr</i>) <i>and</i> CHECK(<i>tokens</i> [<i>i</i> + <i>n</i> + 1], <i>tokens</i> [<i>i</i> + <i>n</i> + 2]) then Construct a sentence from <i>arr</i> , <i>i.e.</i> create a string with the tokens in <i>arr</i> separated by spaces and add appropriate punctuation Add the sentence to <i>ret</i> <i>idx</i> \leftarrow <i>i</i> + <i>n</i> + 1	Obtain $leftList$, the list of rules corresponding with $left$ (i.e. the rule when $left$ is a verbthe rule when $left$ is a gerund, etc.), from the global Dictionary variables $dict$ andhyphenatedObtain $rightList$ in a similar mannerfor $leftRule$ in $leftList$ dofor $rightRule$ in $rightList$ doSplit $leftRule$ and $rightRule$ into lists of Disjuncts ld and rd for r in rl doIf r r in rd doIf $r = r$ then return trueelse continue
else Construct a sentence from the original value of <i>arr</i>	end
Add the sentence to ret $idx \leftarrow i + 1$	end end end
end	end end
end	return false
end	
end	
return ret	

Results

Metric	Result
Ground Truth (POC-English Corpus) ⁴	
Total number of sentences	88
Average sentence length	5.51136
NLS Algorithm Results	
Total number of sentences	87
Average sentence length	5.57471
Overall Statistics	
Runtime	57 sec.
Number of sentences matching exactly	78
Number of sentence boundaries accurately identified	85/87
Accuracy of boundary identification	0.97701

Gutenberg Corpus NLS Results		
Metric	Result	
Ground Truth (Gutenberg Corpus) ⁵		
otal number of sentences	10	
verage sentence length	13.2	
NLS Algorithm Results		
otal number of sentences	11	
verage sentence length	13.2	
overall Statistics		
untime	14 sec.	
lumber of sentences matching exactly	7	
lumber of sentence boundaries ccurately identified	7/9	
ccuracy of boundary identification	0.77778	

⁴ <u>http://langlearn.singularitynet.io/data/poc-english/, ⁵ http://langlearn.singularitynet.io/data/cleaned/English/Gutenberg</u>

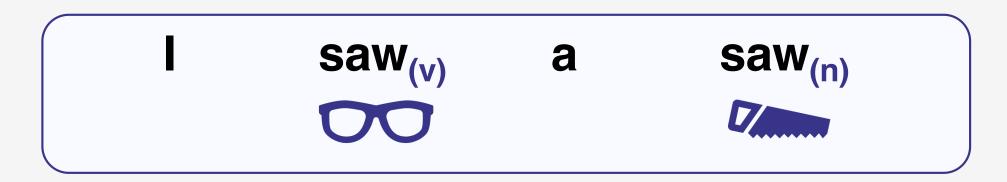
Comparison with Prior Work

Three alternatives: Syntok⁶, PragmaticNet⁷, DeepSegment⁸

Syntok and PragmaticNet

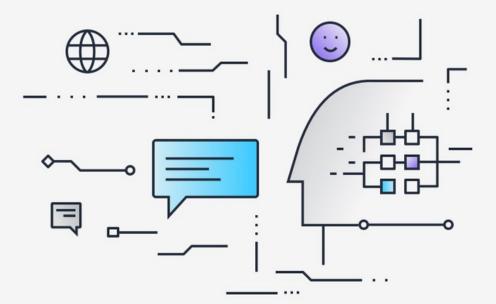
- o "Terminal markers"
- o Punctuation, quotations, and parentheticals
- o Zero boundaries identified

DeepSegment


- o BiLSTMs
- o CRF-based supervision
- o 1-2 boundaries identified

⁶ <u>https://github.com/fnl/syntok</u>

- ⁷ https://www.tm-town.com/natural-language-processing
- ⁸ https://github.com/notAl-tech/deepsegment


The Grammatical Ambiguity Problem

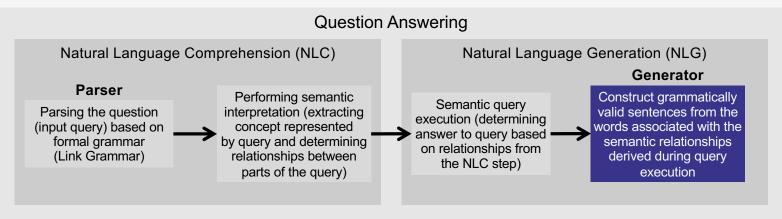
Problem

- Solution: Semantic (word sense) disambiguation
 - What "sense" or definition of a word is activated by that word's use in a particular context?

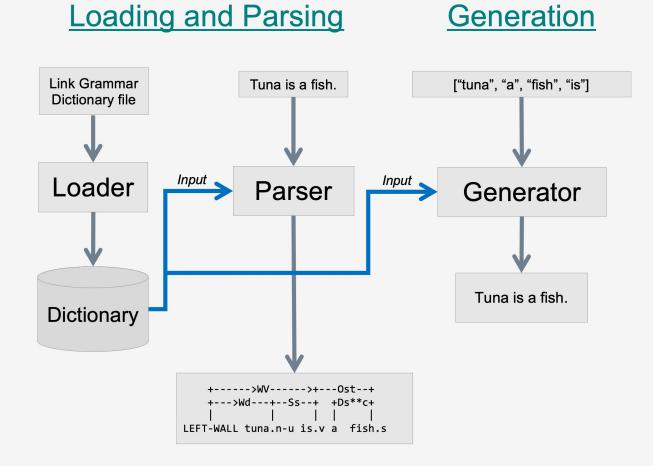
Part III DEEP DIVE INTO NLG

What is NLG?

Holistic NLG

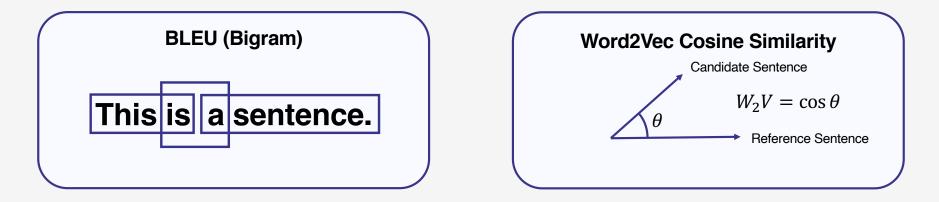


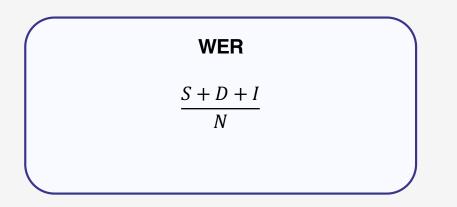
Surface Realization

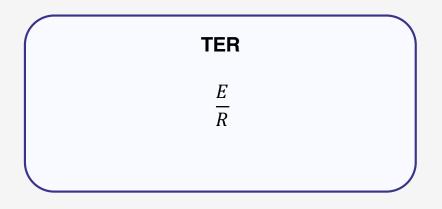


NLG in QA

<u>Pipeline</u>


Loader-Generator NLG Architecture




Generator

Algorithm 3: CONNECTS	
Input : A pair of strings $left$ and $right$, representing the two words to potentially be connected	
Output: A boolean value indicating whether $left$ and $right$ can be connected via valid Link Grammar rules	
Obtain $leftList$, the list of rules corresponding with $left$ (i.e. the rule when $left$ is a verb, the rule when $left$ is a gerund, etc.), from the global Dictionary variables $dict$ and hyphenated Obtain $rightList$ in a similar manner	
for $leftRule$ in $leftList$ do for $rightRule$ in $rightList$ do Split $leftRule$ and $rightRule$ into lists of Disjuncts ld and rd for l in ld do for r in rd do Replace all instances of '-' in l with '+' and vice versa if $l = r$ then	+ <u>SI</u> s+ + +- <u>D</u> s-+ is.v a human.r
else end end end	
end end	
end	
return false	

Metrics

Results

Metric	Result
Architecture-Specific Metrics	
Single correct generated sentence	62/92
Aultiple sentences with one correct	30/92
Aultiple sentences with none correct	0/92
o generated sentences	0/92
oo many results (>25 candidates)	0/92
ccuracy	1.000
Overall Statistics	
Average BLEU (Bigram)	1.000
verage Word2Vec Cosine Similarity	0.988
verage WER	0.246
Average TER	0.082

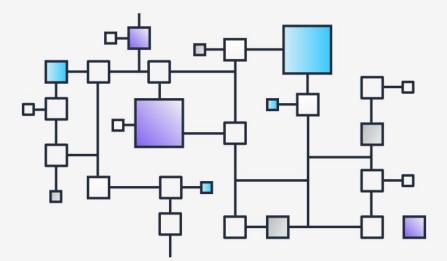
"Small World" Corpus, ULL Grammar

Metric	Result	
Architecture-Specific Metrics		
Single correct generated sentence	8/92	
Multiple sentences with one correct	57/92	
Multiple sentences with none correct	0/92	
No generated sentences	0/92	
Too many results (>25 candidates)	27/92	
Accuracy	0.707	
Overall Statistics		
Average BLEU (Bigram)	0.999	
Average Word2Vec Cosine Similarity	0.900	
Average WER	3.713	
Average TER	0.395	

Results (cont.) + Comparison with Prior Work

Gutenberg Corpus, Link Grammar

Metric	Result	
Architecture-Specific Metrics		
Single correct generated sentence	1/54	
Multiple sentences with one correct	53/54	
Multiple sentences with none correct	0/54	
No generated sentences	0/54	
Too many results (>25 candidates)	0/54	
Accuracy	1.000	
Overall Statistics		
Average BLEU (Bigram)	0.652	
Average Word2Vec Cosine Similarity	0.746	
Average WER	5.976	
Average TER	1.738	


Baseline Results

Metric	Result	
Architecture-Specific Metrics		
Average BLEU (Bigram)	0.747	
Average Word2Vec Cosine Similarity	0.722	
Average WER	3.114	
Average TER	0.505	
Overall Statistics		
Average BLEU (Bigram)	0.325	
Average Word2Vec Cosine Similarity	0.401	
Average WER	11.62	
Average TER	1.988	

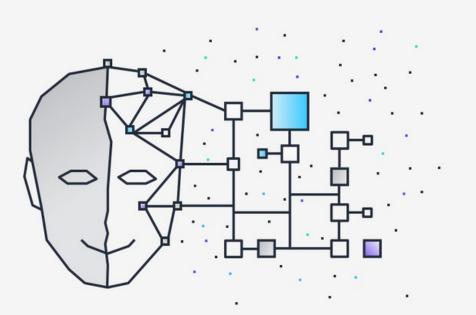
Baseline Model: State-of-the-art Transformer⁹ architecture tasked with sentence reconstruction and subject to BERT-type modifications

⁹ A. Vaswani, et al., "Attention Is All You Need," arXiv:1706.03762 [cs.CL], December 2017

Part IV CONCLUSION

Applications

NLS


- Semantic query execution in QA
 - Aigents Social Media Intelligence Platform
- o Text simplification
- o Any NLP algorithms that operate at the sentential level
 - ✤ Automatic summarization, entity extraction, etc.
- NLG
 - o Sentence generation in QA
 - Replacing Aigents "pidgin" English
 - Virtual assistant AI technologies

Current & Future Work

- Implementing grammatical and semantic disambiguation
- Adding support for languages besides English
 - Russian requires heavy morphology usage

Part IV

CODE USAGE & DEMOS

Loader

1. To execute a series of unit tests, run:

```
cd src
javac main/java/org/aigents/nlp/lg/*.java
javac main/java/org/aigents/nlp/gen/*.java
javac test/java/org/aigents/nlp/gen/*.java
java test.java.org.aigents.nlp.gen.TestSegment
```

2. To output the rule and disjuncts associated with a given word, run:

```
cd src
javac main/java/org/aigents/nlp/lg/*.java
java main.java.org.aigents.nlp.lg.Loader en/4.0.dict board
```

Natural Language Segmentation

1. To test on the POC-English corpus, run:

```
cd src
javac main/java/org/aigents/nlp/lg/*.java
javac main/java/org/aigents/nlp/gen/*.java
java main.java.org.aigents.nlp.gen.Segment en/4.0.dict poc_english.txt
```

2. To test on the Gutenberg corpus, run:

```
cd src
javac main/java/org/aigents/nlp/lg/*.java
javac main/java/org/aigents/nlp/gen/*.java
java main.java.org.aigents.nlp.gen.Segment en/4.0.dict gutenberg544.txt
```

3. To test on custom text, run:

```
cd src
javac main/java/org/aigents/nlp/lg/*.java
javac main/java/org/aigents/nlp/gen/*.java
java main.java.org.aigents.nlp.gen.Segment en/4.0.dict tuna is a fish
        eagle is a bird dog is a mammal
```

Natural Language Generation

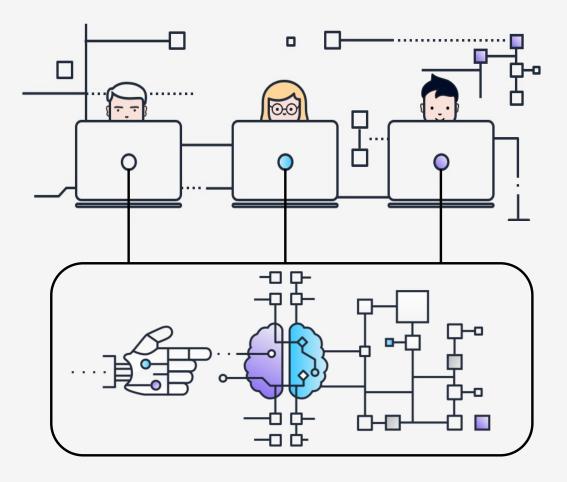
1. To test on the POC-English corpus, run:

```
cd src
javac main/java/org/aigents/nlp/lg/*.java
javac main/java/org/aigents/nlp/gen/*.java
java main.java.org.aigents.nlp.gen.Generator en/4.0.dict poc_english.txt
```

2. To test on the Gutenberg corpus, run:

```
cd src javac main/java/org/aigents/nlp/lg/*.java
javac main/java/org/aigents/nlp/gen/*.java
java main.java.org.aigents.nlp.gen.Generator en/4.0.dict gutenberg544.txt
```

3. To test on custom text, run:


```
cd src
javac main/java/org/aigents/nlp/lg/*.java
javac main/java/org/aigents/nlp/gen/*.java
java main.java.org.aigents.nlp.gen.Generator en/4.0.dict food Cake a is now
```

Walking Through GitHub

https://github.com/aigents/aigents-java-nlp

Questions?

ART: https://blog.singularitynet.io/research/home